classifying fuzzy normal subgroups of finite groups
Authors
abstract
in this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
similar resources
Classifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
full textCLASSIFYING FUZZY SUBGROUPS OF FINITE NONABELIAN GROUPS
In this paper a rst step in classifying the fuzzy subgroups of a nite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups.
full textClassifying Fuzzy Normal Subgroups of Finite Groups
In this paper a first step in classifying the fuzzy normal subgroups of a finite group is made. Explicit formulas for the number of distinct fuzzy normal subgroups are obtained in the particular cases of symmetric groups and dihedral groups.
full textClassifying Fuzzy Subgroups of Finite Nonabelian Groups
In this paper a first step in classifying the fuzzy subgroups of a finite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups.
full textClassifying fuzzy subgroups for a class of finite p-groups
In this note we give explicit formulas for the number of distinct fuzzy subgroups of finite p-groups having a cyclic maximal subgroup. MSC (2010): Primary 20N25, 03E72; Secondary 05E15, 20D30, 20D60.
full textOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of fuzzy systemsPublisher: university of sistan and baluchestan
ISSN 1735-0654
volume 12
issue 2 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023